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Greetings from task World.

Greetings from procedure Hello.

or
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An example

with Ada.Text_IO;
procedure Hello is
   task World;
   task body World is
   begin
      Put_Line ("Greetings from task World.");
   end World;
begin
   Put_Line ("Greetings from procedure Hello.");
end Hello;
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An example (continued)

With the GCC version of the Ada standard library we get:
Greetings from task World.

Greetings from procedure Hello.

Using a different – but still correct – version of the Ada standard
library we get:
GGrreeeettiinnggss ffrroomm tparsokc eWdourrled .H

ello.

In reality we would like Put_Line in the example program to
be an atomic operation.
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Logical parallelisation

Imagine a PBX management system1.

   task Connection_Manager;

   task PBX_Message_Receiver;

   task type Call_Manager (ID : Channel);

   Call := new Call_Manager (Incoming_Channel);

1Could be https://github.com/AdaHeads/Alice
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Implicit parallelisation

Give GCC the flag -ftree-vectorize and see what
happens.

This can easily speed up a calculation with a factor of 6, and
I’ve seen a factor of 8 reported.
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Tasks

−−  Singleton declaration:
task Name;

−−  Type declaration:
task type Name;

−−  Implementation:
task body Name is
   −− declarations
begin
   −− statements
end Name;
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Protected objects

protected type Name is
   function Read_Some (Data : in Some_Type) return Data_Type;
   −−  multiple parallel reads

   procedure Modify (Data : in out Some_Type);
   −−  exclusive read/write

   entry Modify_With_Barrier (Data : in out Some_Type);
   −−  exclusive read/write, possibly with barriers blocking
private
   Internal_Data : Some_Type;
end Name;
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Rendezvous

task type Name is
   entry Rendezvous (Data : in out Data_Type);
end Name;

task body Name is
   −− declarations
begin
   −− statements
   accept Rendezvous (Data : in out Data_Type) do
      −− statements / copying of data
   end Rendezvous;
   −− statements
end Name;

−−  Making a rendezvous with Name:
Name.Rendezvous (Data => Some_Data);
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Semaphores

protected type Semaphore (Initial_Value : Natural) is
   procedure Signal;
   entry Wait;
private
   Count : Natural := Initial_Value;
end Semaphore;

protected body Semaphore is
   procedure Signal is
   begin
      Count := Count + 1;
   end Signal;

   entry Wait when Count > 0 is
   begin
      Count := Count − 1;
   end Wait;
end Semaphore;
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Semaphores (continued)

We could have used a semaphore to ensure that each of the
two calls to Put_Line in the very first example was running as
an atomic operation:

procedure Hello is
Exclusive_Output : Semaphore (Initial_Value => 1);
task World;
task body World is
begin

Exclusive_Output.Wait;
Put_Line ("Greetings from task World.");
Exclusive_Output.Signal;

end World;
begin

Exclusive_Output.Wait;
Put_Line ("Greetings from procedure Hello.");
Exclusive_Output.Signal;

end Hello;
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Barrier

protected type Barrier (Group_Size : Positive) is
   entry Wait;
private
   Gate_Open : Boolean := False;
end Barrier;

protected body Barrier is
   entry Wait when Wait’Count = Group_Size or Gate_Open is
   begin
      if Wait’Count > 0 then
         Gate_Open := True;
      else
         Gate_Open := False;
      end if;
   end Wait;
end Barrier;
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Broadcast

protected type Broadcast is
   procedure Send (Message : in Message_Class);
   entry Tune_In (Message : out Message_Class);
private
   Current_Message : Message_Class;
   Has_Message     : Boolean := False;
end Broadcast;

protected Broadcast is
   procedure Send (Message : in Message_Class) is
   begin
      if Tune_In’Count > 0 then
         Current_Message := Message;
         Has_Message := True;
      end if;
   end Send;

   entry Tune_In (Message : out Message_Class) when Has_Message is
   begin
      Message := Current_Message;
      Has_Message := Tune_In’Count > 0;
   end Tune_In;
end Broadcast;

Jacob Sparre Andersen Parallel Programming Patterns



Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Queue

protected type Queue is
   procedure Insert (Message : in Message_Class);
   entry Get (Message : out Message_Class);
private
   Messages : ...;

end Queue;

protected Queue is
   procedure Insert (Message : in Message_Class) is
   begin
      ...

   end Insert;

   entry Get (Message : out Message_Class) when not Messages.Is_Empty is
   begin
      ...

   end Get;
end Queue;
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Worker tasks

   Work_Queue : Queue;

   task type Worker;
   task body Worker is
      Job : Task_Description;
   begin
      loop
         Work_Queue.Get (Job);
         Process (Job);
      end loop;
   end Worker;

   Workers : array (1 .. CPUs) of Worker;
begin
   ...
   Work_Queue.Insert (New_Job);
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A small warning: Not all source code in this presentation is complete and compilable.
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