
Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Ouverture

Parallel Programming Patterns

Greetings from task World.

Greetings from procedure Hello.

or

GGrreeeettiinnggss ffrroomm tparsokc eWdourrled .H

ello.

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Parallel Programming Patterns

Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation

March 10th 2013

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Jacob Sparre Andersen
Currently:

Independent consultant.
Co-founder of AdaHeads K/S.
Co-owner of Koparo Ltd.
Software architect at AdaHeads and Koparo.

Background:
PhD & MSc in experimental physics.
BSc in mathematics.
Has taught mathematics, physics and software
engineering.
Worked with bioinformatics, biotechnology and modelling
of investments in the financial market.

jacob@jacob-sparre.dk
www.jacob-sparre.dk

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Outline

1 Introduction

2 My favourite patterns

3 Low-level patterns

4 Higher-level patterns

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

An example

with Ada.Text_IO;
procedure Hello is
 task World;
 task body World is
 begin
 Put_Line ("Greetings from task World.");
 end World;
begin
 Put_Line ("Greetings from procedure Hello.");
end Hello;

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

An example (continued)

With the GCC version of the Ada standard library we get:
Greetings from task World.

Greetings from procedure Hello.

Using a different – but still correct – version of the Ada standard
library we get:
GGrreeeettiinnggss ffrroomm tparsokc eWdourrled .H

ello.

In reality we would like Put_Line in the example program to
be an atomic operation.

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Logical parallelisation

Imagine a PBX management system1.

 task Connection_Manager;

 task PBX_Message_Receiver;

 task type Call_Manager (ID : Channel);

 Call := new Call_Manager (Incoming_Channel);

1Could be https://github.com/AdaHeads/Alice

Jacob Sparre Andersen Parallel Programming Patterns

https://github.com/AdaHeads/Alice

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Implicit parallelisation

Give GCC the flag -ftree-vectorize and see what
happens.

This can easily speed up a calculation with a factor of 6, and
I’ve seen a factor of 8 reported.

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Tasks

−− Singleton declaration:
task Name;

−− Type declaration:
task type Name;

−− Implementation:
task body Name is
 −− declarations
begin
 −− statements
end Name;

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Protected objects

protected type Name is
 function Read_Some (Data : in Some_Type) return Data_Type;
 −− multiple parallel reads

 procedure Modify (Data : in out Some_Type);
 −− exclusive read/write

 entry Modify_With_Barrier (Data : in out Some_Type);
 −− exclusive read/write, possibly with barriers blocking
private
 Internal_Data : Some_Type;
end Name;

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Rendezvous

task type Name is
 entry Rendezvous (Data : in out Data_Type);
end Name;

task body Name is
 −− declarations
begin
 −− statements
 accept Rendezvous (Data : in out Data_Type) do
 −− statements / copying of data
 end Rendezvous;
 −− statements
end Name;

−− Making a rendezvous with Name:
Name.Rendezvous (Data => Some_Data);

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Semaphores

protected type Semaphore (Initial_Value : Natural) is
 procedure Signal;
 entry Wait;
private
 Count : Natural := Initial_Value;
end Semaphore;

protected body Semaphore is
 procedure Signal is
 begin
 Count := Count + 1;
 end Signal;

 entry Wait when Count > 0 is
 begin
 Count := Count − 1;
 end Wait;
end Semaphore;

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Semaphores (continued)

We could have used a semaphore to ensure that each of the
two calls to Put_Line in the very first example was running as
an atomic operation:

procedure Hello is
Exclusive_Output : Semaphore (Initial_Value => 1);
task World;
task body World is
begin

Exclusive_Output.Wait;
Put_Line ("Greetings from task World.");
Exclusive_Output.Signal;

end World;
begin

Exclusive_Output.Wait;
Put_Line ("Greetings from procedure Hello.");
Exclusive_Output.Signal;

end Hello;

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Barrier

protected type Barrier (Group_Size : Positive) is
 entry Wait;
private
 Gate_Open : Boolean := False;
end Barrier;

protected body Barrier is
 entry Wait when Wait’Count = Group_Size or Gate_Open is
 begin
 if Wait’Count > 0 then
 Gate_Open := True;
 else
 Gate_Open := False;
 end if;
 end Wait;
end Barrier;

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Broadcast

protected type Broadcast is
 procedure Send (Message : in Message_Class);
 entry Tune_In (Message : out Message_Class);
private
 Current_Message : Message_Class;
 Has_Message : Boolean := False;
end Broadcast;

protected Broadcast is
 procedure Send (Message : in Message_Class) is
 begin
 if Tune_In’Count > 0 then
 Current_Message := Message;
 Has_Message := True;
 end if;
 end Send;

 entry Tune_In (Message : out Message_Class) when Has_Message is
 begin
 Message := Current_Message;
 Has_Message := Tune_In’Count > 0;
 end Tune_In;
end Broadcast;

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Queue

protected type Queue is
 procedure Insert (Message : in Message_Class);
 entry Get (Message : out Message_Class);
private
 Messages : ...;

end Queue;

protected Queue is
 procedure Insert (Message : in Message_Class) is
 begin
 ...

 end Insert;

 entry Get (Message : out Message_Class) when not Messages.Is_Empty is
 begin
 ...

 end Get;
end Queue;

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Worker tasks

 Work_Queue : Queue;

 task type Worker;
 task body Worker is
 Job : Task_Description;
 begin
 loop
 Work_Queue.Get (Job);
 Process (Job);
 end loop;
 end Worker;

 Workers : array (1 .. CPUs) of Worker;
begin
 ...
 Work_Queue.Insert (New_Job);

Jacob Sparre Andersen Parallel Programming Patterns

Introduction
My favourite patterns

Low-level patterns
Higher-level patterns

Contact

Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation

jacob@jacob-sparre.dk
http://www.jacob-sparre.dk/

A small warning: Not all source code in this presentation is complete and compilable.

Jacob Sparre Andersen Parallel Programming Patterns

http://www.jacob-sparre.dk/

	Introduction
	My favourite patterns
	Low-level patterns
	Higher-level patterns

