
Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

Privacy Leaks in Java Classes

Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation

June 2014

Jacob Sparre Andersen Privacy Leaks in Java Classes



Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

Privacy Leaks in Java Classes

DO-178C makes it important to study the reliability deficiencies
of Java – and learn how to avoid them.

This presentation is focused on one particular class of
programming errors in Java; privacy leaks from encapsulated
data structures.

In Java assignment (=) works differently for simple and
composite types (classes). One of the consequences of this
design decision in Java is that “getters” for composite type
attributes have to be written differently than those for simple
type attributes.

Jacob Sparre Andersen Privacy Leaks in Java Classes



Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

Definition: Privacy leaks

Privacy leaks in general:

When somebody “outside” gets a copy of an object meant to be
securely “inside”... 1

In our specific context:

When a client of a Java class can modify the (referenced)
value of a private attribute of the class.

1
http://www.eecs.yorku.ca/course_archive/2012-13/F/1030/announcements/1030-07.pdf

Jacob Sparre Andersen Privacy Leaks in Java Classes

http://www.eecs.yorku.ca/course_archive/2012-13/F/1030/announcements/1030-07.pdf


Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

Potential bugs due to privacy leaks

When a class is implemented with private attributes, it can be
to:

Enforce a consistent state inside an object of that class.
Make objects of that class immutable.

A privacy leak will break these possible intended features of
making attributes private.

An “interesting” side-effects could for example be that a client
accidentally modifies encryption parameters, making the
resulting encryption trivial to break.

Jacob Sparre Andersen Privacy Leaks in Java Classes



Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

Example of safe “getter”

public class NonLeaking {
private Counter leakedCounter;

. . .

/* Getter written by hand: */
public Counter getLeakedCounter() {

return new Counter(leakedCounter);
}

The new operator creates a new object. Here of class
Counter and as a copy of the private attribute
leakedCounter.

Full source code: http://repositories.jacob-sparre.dk/privacy-leaks-examples/

Jacob Sparre Andersen Privacy Leaks in Java Classes

http://repositories.jacob-sparre.dk/privacy-leaks-examples/


Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

Example: Generating a “getter” in Eclipse

Lets see how the state-of-the art Java IDE, Eclipse, thinks a
“getter” for this class should be written...

Jacob Sparre Andersen Privacy Leaks in Java Classes



Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

Example of privacy leaking “getter”

public class Leaking {
private Counter leakedCounter;

. . .

/* Getter generated by Eclipse: */
public Counter getLeakedCounter() {

return leakedCounter;
}

Notice how the “getter” generated by Eclipse simply returns a
copy of the reference to the private attribute; giving the client
access to modify the internal state of an object in the class
directly.

Full source code: http://repositories.jacob-sparre.dk/privacy-leaks-examples/

Jacob Sparre Andersen Privacy Leaks in Java Classes

http://repositories.jacob-sparre.dk/privacy-leaks-examples/


Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

The pattern of a privacy leaking “getter” (step 1)

Step one is to identify by-reference, private attributes. Only
these are subject to the kind of privacy leaks we are looking for.

In the normalised sources files we work on, this reduces to
identifying lines of the form:

“private” type_identifier attribute_identifier “;”

We are interested in the matching attributes, whose type isn’t a
simple type or an immutable class.

Jacob Sparre Andersen Privacy Leaks in Java Classes



Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

The pattern of a privacy leaking “getter” (step 2)

Step two is to identify cases where a method returns a simple
copy of an attribute. These are the source of the kind of privacy
leaks we are looking for.

In the normalised sources files we work on, this reduces to
identifying lines of the form:

“return this.”attribute_identifier “;”

where the attribute is on our list from step one.

Jacob Sparre Andersen Privacy Leaks in Java Classes



Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

The pattern of a privacy leaking “getter” (step 3)

In case step two finds matching lines (i.e. potentially leaking
“getters”), step three is to see if the class of the potentially
leaked attribute is actually immutable, as this makes a simple
“getter” safe.

If the class isn’t already known to be mutable, a manual
inspection of the class is required at this point.

Any “getters” which match after this check must be considered
privacy leaking, and thus unsafe.

Jacob Sparre Andersen Privacy Leaks in Java Classes



Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

A real-life example

(a real-life example from a security-critical application)

Jacob Sparre Andersen Privacy Leaks in Java Classes



Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

Comparison with Ada

The most relevant difference between Ada and Java with
respect to the kind of privacy leaks I have presented here is:

Assignment in Java works differently for simple and
composite objects (“classes”), whereas Ada has consistent
assignments (but requires the programmer worry about
object or reference to object).

This means that a superficially equivalent record type and
“getter” written in Ada will be safe with regard to privacy
leaking.

Jacob Sparre Andersen Privacy Leaks in Java Classes



Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

Comparison with Ada (continued)

Ada does have to option of storing references to attributes – as
Java does it behind the scenes – but has to be done explicitly
by the programmer.

It is my impression that the explicitness required by Ada is
enough to make programmers aware of how the attribute
should be handled, but it is not something I have hard
documentation of.

Jacob Sparre Andersen Privacy Leaks in Java Classes



Potential bugs due to privacy leaks
The pattern of a privacy leaking “getter”

Comparison with Ada

Contact

Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation

jacob@jacob-sparre.dk
http://www.jacob-sparre.dk/

You can find my Open Source software repositories at:
http://repositories.jacob-sparre.dk/

Jacob Sparre Andersen Privacy Leaks in Java Classes

http://www.jacob-sparre.dk/
http://repositories.jacob-sparre.dk/

	Potential bugs due to privacy leaks
	The pattern of a privacy leaking ``getter''
	Comparison with Ada

