
Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Ouverture

The children’s game universe “Crimeville”
from the game developers Art of Crime
challenges the players to solve detective
riddles cooperatively. In the on-line version
of the game this means that the players in
each session of the game can chat with
each other.

To help the children write better – and to limit them being
naughty – the chat is going through a language server1.

1Written in Ada
Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Ada in the on-line multi-user game “Crimeville”

Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation

4th February 2012

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Jacob Sparre Andersen

Currently:
Independent consultant.
Co-founder of AdaHeads K/S.
Programs embedded devices for Koparo.

Background:
PhD in experimental physics.
BSc in mathematics.
Has taught mathematics, physics and software
engineering.
Worked with bioinformatics, biotechnology and modelling
of investments in the financial market.

jacob@jacob-sparre.dk
www.jacob-sparre.dk

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

The context – “Crimeville”

Crimeville . . .
is an on-line free to play2 MMO by the Danish game
producer Art of Crime.
mixes a cocktail of heartfelt wacky story and character
driven crime fiction, interaction and gaming for tweens.
is both an on-line game, trading cards, and a face-to-face
game.

You can play the game at http://www.crimeville.com/.

2But not Open Source.
Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

http://www.crimeville.com/

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Check spelling and foul words

When Art of Crime contacted me, their problem was simply
described as helping the players write correctly, and limit how
much they insult each other. – Already at this stage the plan
was to do this at the word level.

In short, every word written by a player should be categorised
in one of four categories; correct, foul, misspelled or unknown.

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

How to classify words

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Communications protocol

We created a simple text based protocol for the interaction
between the game server and the language servers.

To simplify the system, we decided that each language server
instance should handle a specific language3.

3I.e. language is selected by IP address and port number.
Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Architecture – a network server

I proposed a solution with network servers checking words
using Ispell compatible Open Source spell checkers.

Some of the benefits:
This makes the language server independent of the actual
game server.
This allows Art of Crime to reuse existing language data
(dictionaries, etc.)
Art of Crime can switch between different spell checkers
with only a small modification of the system.
I could choose whatever implementation language suited
me for the task.

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Architecture – inside the language server

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Application logic

else

 Foul_Words.Check (Word => Word,
 Class => Class);

 case Class is
 when Aspell.Found =>
 return Game_Communication.Foul_Word;
 when Aspell.Misspelled =>
 Dictionary.Check (Word => Word,
 Class => Class);

 case Class is
 when Aspell.Found =>
 return Game_Communication.Correct_Word;
 when Aspell.Misspelled =>
 return Game_Communication.Misspelled_Word;
 when Aspell.Not_Found | Aspell.Timeout | Aspell.Error =>
 return Game_Communication.Foul_Word;
 end case;
 when Aspell.Not_Found | Aspell.Timeout | Aspell.Error =>
 Dictionary.Check (Word => Word,
 Class => Class);

 case Class is
 when Aspell.Found =>
 return Game_Communication.Correct_Word;
 when Aspell.Misspelled =>
 return Game_Communication.Misspelled_Word;
 when Aspell.Not_Found | Aspell.Timeout | Aspell.Error =>
 return Game_Communication.Unknown_Word;
 end case;
 end case;

end if;

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Launching a spell checker

begin
 POSIX.IO.Create_Pipe (Write_End => To_Child,
 Read_End => From_Parent);
 POSIX.IO.Create_Pipe (Write_End => To_Parent,
 Read_End => From_Child);
 POSIX.IO.Create_Pipe (Write_End => Errors_To_Parent,
 Read_End => Errors_From_Child);

 case Fork is
 when Parent =>
 POSIX.IO.Close (From_Parent);
 POSIX.IO.Close (To_Parent);
 POSIX.IO.Close (Errors_To_Parent);
 when Child =>
 POSIX.IO.Close (To_Child);
 POSIX.IO.Close (From_Child);
 POSIX.IO.Close (Errors_From_Child);

 Move (From => From_Parent,
 To => POSIX.IO.Standard_Input);
 Move (From => To_Parent,
 To => POSIX.IO.Standard_Output);
 Move (From => Errors_To_Parent,
 To => POSIX.IO.Standard_Error);

 POSIX.Unsafe_Process_Primitives.Exec_Search (Program_Name,
 Arguments);
 end case;
end Pipe_Fork_Exec_Search;

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Levels of source code reuse

Unit Compilation units Subroutines Lines
Standardised 18 26 6297
Vendor-provided 2 9 3480
Reused 5 5 111
Reusable 7 20 344
Project-only 6 13 485
Total 38 73 10717

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Supporting packages (pre-existing)

Standardised:
POSIX.IO: For communication with clients and spell
checkers.
POSIX.Unsafe_Process_Primitives: To launch spell
checkers.

Vendor-provided:
GNAT.Sockets: To set up network connections.

Home-grown:
GNAT.Sockets.Compatibility: To make GNAT
sockets visible as POSIX file descriptors.
EUP.Sockets: Short-cuts for some common patterns
when using TCP/IP sockets.

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Supporting packages (new, likely to be reused)

Buffered_IO: Adds a minimal Ada.Text_IO-like
interface on top of POSIX.IO.
Daemon: Imports the C function daemon, which is used to
disconnect a process from its terminal and parent process.
Logging: Simple logging package. Encapsulates an
Ada.Text_IO file in a protected object, which only allows
writing whole lines.
Pipe_Fork_Exec_Search: Launches an external
program with POSIX pipes to its standard input, output and
error files.

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Supporting packages (application specific)

Aspell: Encapsulates a spell checker instance in a
protected object.
Game_Communication: Encapsulates the communication
with a client (game server).
Logs: Declares the log files used by the server.

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Conclusions

Solving the task as a stand-alone TCP/IP server allowed
me to use the best programming language for the task,
independently of what was used for other parts of the
complete system.
me to make an easily reusable system
us to have a well-defined boundary between my
responsibilities and those of my customer

Using existing Open Source spell-checkers allows us to
reuse existing language data such as dictionaries and
phonetic rules.
Using the Ispell pipe protocol to communicate with the
spell-checker allows us to switch between different spell
checkers with only a small modification of the system.

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

Introduction
Requirements and Specification

Architecture
Implementation

Reuse

Contact

Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation

jacob@jacob-sparre.dk
www.jacob-sparre.dk

Crimeville
www.crimeville.com

Complete source code at
http://www.jacob-sparre.dk/spelling/crimeville.zip

Jacob Sparre Andersen Ada in the on-line multi-user game “Crimeville”

http://www.jacob-sparre.dk/spelling/crimeville.zip

	Introduction
	Requirements and Specification
	Architecture
	Implementation
	Reuse

